

DermSynth3D: Synthesis of in-the-wild Annotated Dermatology Images

<text><section-header><text><text><text><text><text>

A. Sinha^{*1}, J. Kawahara^{*1}, A. Pakzad^{*1}, K. Abhishek¹, M. Ruthven², E. Ghorbel², A. Kacem², D. Aouada², and G. Hamarneh¹

¹ Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada ² Computer Vision, Imaging & Machine Intelligence Research Group, Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

Highlights

- Synthesis of skin lesion images by rendering 2D views of a 3D scene.
- Skin lesion blending on 3D human textured meshes at optimized body locations.
- Controlled lighting, choice of background, and optimal camera viewpoint.
- 2D images with dense annotations for skin, lesion and body-part segmentation.
- Open-source modular code and datasets for academic research.

DermSynth3D: Overview

Sample Synthetic Images

Trained

on FUSed

10-

Ground

1 20 -

Dense Annotations

Qualitative Results: Downstream Tasks

Lighting Variation

Quantitative Results

Acknowledgements

IoU

Digital Research Alliance of Canada Alliance de recherche numérique du Canada Skin lesion images: Fitzpatrick17k

3D meshes of humans: 3DBodyTex.v1

Background scenes: SceneNet-RGBD

Lesion

Ground Truth

Multi-Class

Prediction