

Motivation

- Anatomical trees are **ubiquitous**, *eg.*, brain vessels and airways Important for clinical diagnosis and surgical planning.
- Difficult to represent
 - Varying and **complex topology and geometry**.
- Traditional medical imaging methods
 - Limited resolution and inefficient.

) Meshes [8]

Goal

(d) Voxel-grids [9]

Represent anatomical trees accurately and efficiently using implicit neural representations (INRs),

and learn a distribution of trees using denoising diffusion on the space of INRs.

Contributions

- First work to represent complex anatomical trees with INRs.
- First work to utilize INRs for segmenting tree-structure from medical images.
- First work to perform diffusion on the space of INR-represented trees for learning tree distributions and generating plausible novel trees with complex topology.
- Demonstrate adaptability across trees of different dimensions, complexities, and anatomy.
- Qualitatively and quantitatively evaluate representation compactness and reconstruction accuracy at high resolutions.

Versatility across modalities (2D/3D/CT/MRI), organs & complexities

Quantitative Results

Modality	Rel. Error (%)	Input Size (MB) INR Size (MB)	Metric
DRIVE (RGB) [7]	0.018	$0.37_{\pm 0.0055}$	$0.066_{\downarrow \times 5.60}$	MMD
DRIVE (Mask) [7]] 1.204	$0.02_{\pm 0.0013}$	$0.003_{\downarrow \times 6.60}$	COV ↑
BraTS [4]	0.039	$68.11_{\pm 0.00}$	$0.753_{\downarrow \times 90.45}$	1—NNA
HAN-Seg [6]	5.627	$12.1_{\pm 1.55}$	$0.630_{\downarrow \times 19.20}$	
				Novaltra

Representing tree structures across medical imaging modalities with INRs.

Representing Anatomical Trees by Denoising Diffusion of Implicit Neural Fields

Ashish Sinha Ghassan Hamarneh

Medical Image Analysis Lab

Methodology

(a) Given a 3D mesh, optimize an INR for occupancy (*i.e.*, inside/outside). (b) Model diffusion process on flattened vectors of optimized INRs to learn the data distribution, and sample novel INRs during the reverse diffusion process.

Compression vs Reconstruction Accuracy of INRs/Meshes/Volumes

(a) For approx. the same memory space, meshes and volumes have higher reconstruction error w.r.t INRs. (b) Notice the disconnected components in low-res volumes.

Tree Statistics: Do INRs have an understanding of the underlying signal?

Value $13.36_{\pm 8.37}$ $0.46_{\pm 0.11}$ $-NNA(\%) \downarrow 87.49_{\pm 8.99}$

Novel tree generation on VascuSynth dataset.

Simon Fraser University

Arbitrary Resolution: Volumetric grids vs INRs

(b) T-SNE plot of the space of trees represented as INRs

(i) $1 \times$

(a) Comparison of 2x, 4x, and 8x zoom. (b) Zoomed-in regions of a mesh reconstructed from INRs and ground truth at different mesh resolutions.

INR-based Image Segmentation

Similar to Mumford-Shah based segmentation [1], we use a piecewise-constant version of the INR to perform segmentation during optimization.

Tree Synthesis using Denoising Diffusion

- [1] Chan, T.F., et al.: Active contours without edges. IEEE Transactions on image processing 10(2), 266–277 (2001)
- [2] Li, H., et al.: Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE TMI 26(9), 1213–1223 (2007)
- [4] Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI **34**(10), 1993–2024 (2014)
- [5] Pizaine, G., et al.: Implicit medial representation for vessel segmentation. In: Medical Imaging 2011: Image Processing. vol. 7962, pp. 1184–1190. SPIE (2011) [6] Podobnik, G., et al.: HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset. Medical physics **50**(3), 1917–1927 (2023)
- [7] Staal, J., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE TMI 23(4), 501–509 (2004)
- [8] Yang, X., et al.: IntrA: 3D intracranial aneurysm dataset for deep learning. In: CVPR (2020)

References

[3] Lindenmayer, A., et al.: Mathematical models for cellular interactions in development I. filaments with one-sided inputs. Journal of theoretical biology **18**(3), 280–299 (1968)

[9] Zhao, M., et al.: Tree-LSTM: using LSTM to encode memory in anatomical tree prediction from 3D images. In: MICCAI Workshop (MLMI). pp. 637–645. Springer (2019)