

Problem Definition

Goal:

Unsupervised MTDA for point cloud via ensemble average.

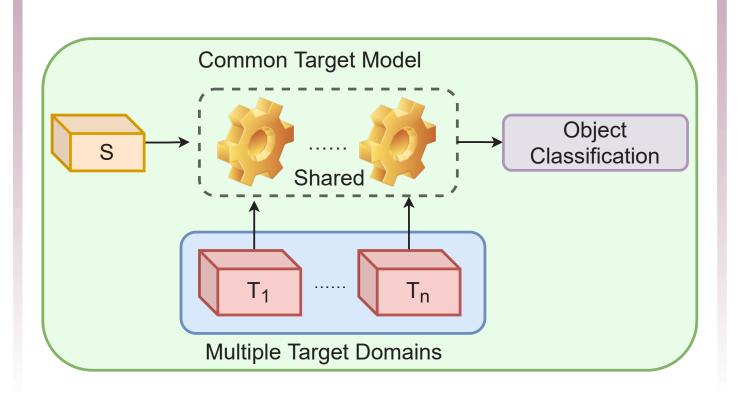
Motivation:

- Prior works focus on STDA for 2D and 3D vision tasks.
- Extending methods of STDA \rightarrow MTDA is challenging.
- Computational complexity \uparrow as # targets \uparrow .
- A preferred approach is a *single* model for multiple targets.

Contributions

- An ensemble-average mixup approach for MTDA.
- Outperforms previous methods.
- Shows non-generalization ability methods: STDA \rightarrow MTDA.
- Benchmarks STDA & MTDA methods on point clouds.
- First work on MTDA for 3D data.

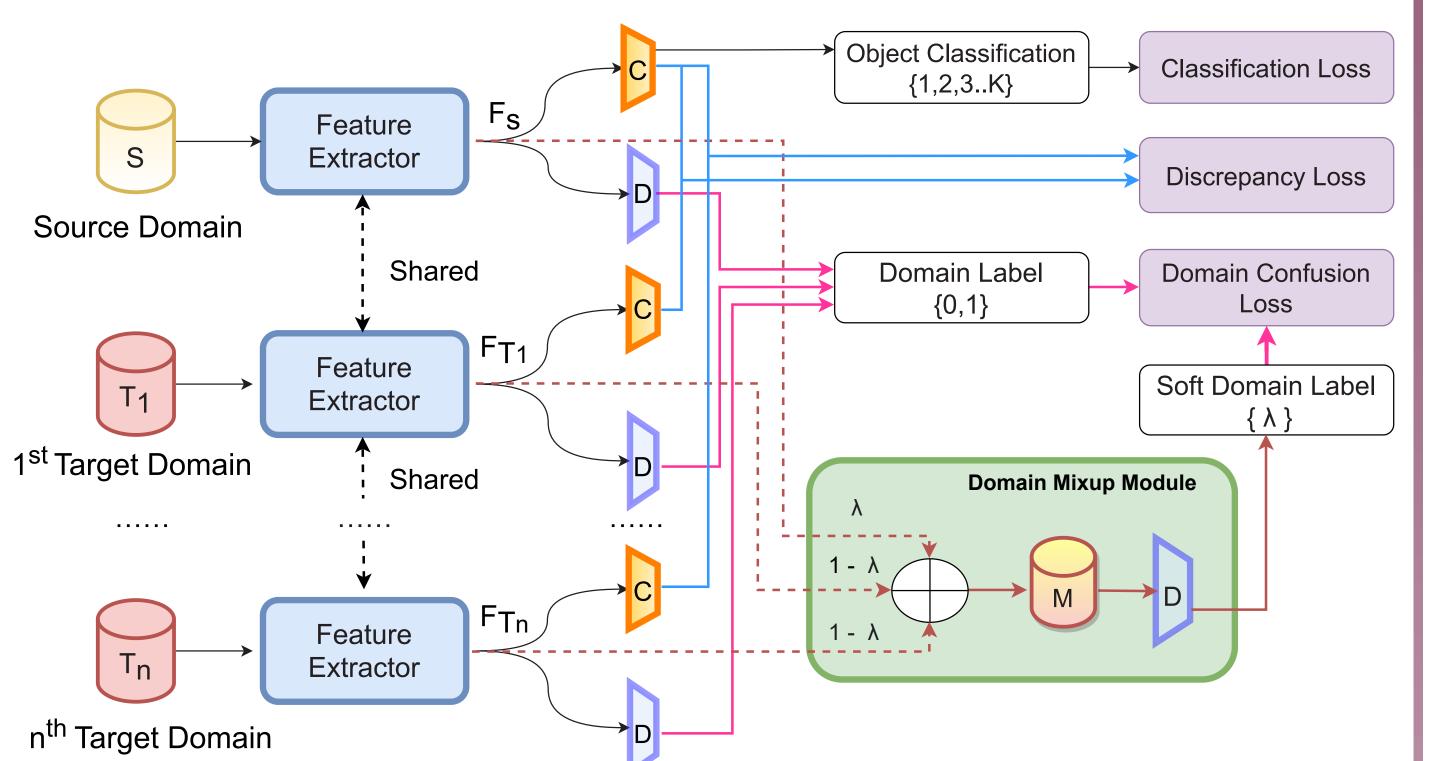
MTDA Setup:



Key Notations

- S/T = Source/ Target Domain
- $L_s =$ Source Domain Label (0)
- $L_{T_i} = \text{Target Domain Label}(1)$
- F_s = Source Embedding
- $F_{T_i} = i^{th}$ Target Embedding
- D =Domain Classifier
- C =Object Classifier
- $\lambda = Mixup Ratio i.e.$ 'Soft' Domain Label

Main Idea: Inspired by mixup, we propose to take an ensemble average of the shared (*i.e.* mixed) latent representations of source and N target domains, modelled as a random variable.



Domain Mixup Module:

$$F_i^m = \lambda F_s + (1 - \lambda) F_{T_i}, \quad L_i^m = \lambda L_s + (1 - \lambda) L_{T_i}, \quad F_m^M = \frac{1}{n} \sum_{i=1}^n F_i^m \quad (1)$$

Comparative Illustration of Mixup Methods:

Baseline Mixup Method (Sep.)

Mixed Embedding₁

Target₁ Embedding

- the source and each target domain.

Objective Function:

The pipeline is traine

ed end-to-end by minimizing
$$\mathcal{L}$$
,

$$\mathcal{L} = \log\left(\sum \left(e^{\gamma(\mathcal{L}_{cls} + \eta \mathcal{L}_{dc} + \zeta \mathcal{L}_{adv})}\right)\right) / \gamma, \qquad (5)$$

 $\mathcal{L}_{cls} = \mathcal{L}_{CE}(C(F_s), y_s)$ $\mathcal{L}_{adv} = \lambda_1 \mathcal{L}_{mmd} + \lambda_2 \mathcal{L}_{adv}$ $\mathcal{L}_{dc} = \mathcal{L}_{CE}(D(F_s), L$

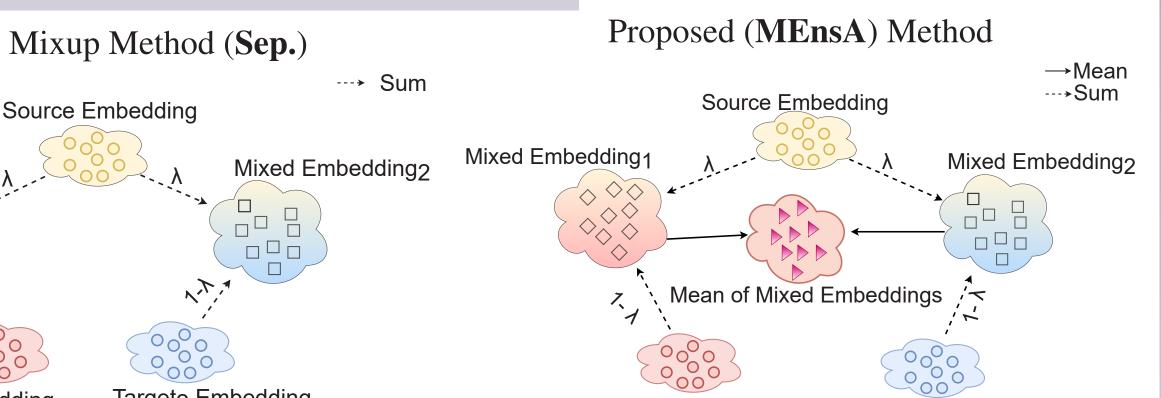
MEnsA: Mix-up Ensemble Average for Unsupervised Multi Target Domain Adaptation on 3D Point Clouds

Ashish Sinha¹ Jonghyun Choi²

¹Simon Fraser University ²Yonsei University

Method

Linearly interpolates the source (F_s) and target feature (F_{T_i}) embeddings to obtain F_i^m and the corresponding mixed *soft* domain labels,



Target₂ Embedding

Target₁ Embedding Target₂ Embedding • Sep. suffers from catastrophic forgetting, as it involves a pair-wise mixup between

• MEnsA optimizes the mapping between source and each target domain by reproducing kernel Hilbert space (RKHS) *i.e.* MMD.

$$\begin{aligned} \mathcal{L}_{s}), & \mathcal{L}_{mmd} = \mathcal{L}_{rbf}(C(F_{s}), F_{T_{i}}, \sigma), \\ \mathcal{L}_{dc} + \lambda_{3} \mathcal{L}_{mixup}, & \mathcal{L}_{mixup} = \mathcal{L}_{CE}(D(F_{m}^{M}), L_{i}^{m}), \\ \mathcal{L}_{s}) + \mathcal{L}_{CE}(D(F_{T_{i}}, L_{T_{i}})), \end{aligned}$$

Quant
Source Src \rightarrow
No ada
MMD
DANN ADDA
MCD PointE
AMEA
MTDA MT-M
MEns
\hookrightarrow w/
Superv
Method
No adapta MMD
ADDA DANN
MCD AMEAN
MTDA-IT MT-MTD
MEnsA (
Supervise
Source $Src \rightarrow$
MEns
Mixup
Factor
Conca Inter-l
Best o

Source Domain	ModelNet (M)		ScanNet ((S*)	ShapeNet (S)		
Loss Terms (Eq. 5)	$M \to S^{\boldsymbol{\ast}}$	$M\!\rightarrow\!\!S$	$S^{\ast} \to M$	$S^* \to S$	$S {\rightarrow} M$	$S \rightarrow S^*$	Avera
\mathcal{L}_{dc}	34.42	45.08	32.81	13.32	23.55	38.13	31.22
\mathcal{L}_{mmd}	43.37	36.05	51.87	29.20	<u>30.67</u>	25.75	36.15
\mathcal{L}_{mix}	32.67	43.51	57.88	<u>33.17</u>	30.52	31.59	38.22
\mathcal{L}_{dc} + \mathcal{L}_{mmd}	41.05	41.78	42.67	19.83	29.08	<u>33.62</u>	34.67
\mathcal{L}_{dc} + \mathcal{L}_{mix}	35.07	45.19	35.29	16.34	22.59	26.79	30.21
\mathcal{L}_{mmd} + \mathcal{L}_{mix}	<u>43.47</u>	<u>53.17</u>	55.95	30.04	28.60	30.40	40.27
$\mathcal{L}_{dc} + \mathcal{L}_{mix} + \mathcal{L}_{mmd}$	45.31	61.36	<u>56.67</u>	46.63	37.02	27.19	45.70

Experiments & Results

titative Classification Results (%) on PointDA-10 Dataset Comparison with prior UDA methods in MTDA setting

e Domain	ModelNet (M)		ScanNet (S*)	ShapeNet (S)		
→ Tgt	$M \to S^\ast$	$\boldsymbol{M} \to \boldsymbol{S}$	$S^* \to M$	$S^* \to S$	$S{\rightarrow}M$	$S \rightarrow S^*$	Average
laptation (Baseline)	35.07	11.75	52.61	29.45	33.65	11.05	28.93
• [1]	57.16	22.68	55.40	28.24	36.77	24.88	37.52
N [2]	55.03	21.64	54.79	37.37	42.54	<u>33.78</u>	40.86
A [3]	29.39	38.46	46.89	20.79	35.33	24.94	32.63
[4]	57.56	27.37	54.11	<u>41.71</u>	<u>42.30</u>	22.39	<u>40.94</u>
DAN [5]	30.19	<u>44.26</u>	43.17	14.30	26.44	28.92	31.21
AN [6]	55.73	33.53	51.50	30.89	34.73	22.21	38.10
A-ITA [7]	55.23	20.96	<u>56.12</u>	33.71	32.33	25.62	37.33
/ITDA [8]	45.43	25.72	28.25	19.51	24.65	35.27	29.81
sA (Ours)	45.31	61.36	56.67	46.63	37.02	27.19	45.70
/o mixup	28.48	40.05	33.89	12.14	27.83	24.48	27.81
vised in each domain	77.99	67.18	79.83	66.27	63.41	53.02	67.95

Class-wise comparison with prior UDA methods

	Bathtub	Bed	Bookshelf	Cabinet	Chair	Lamp	Monitor	Plant	Sofa	Table	Average
tation (Baseline)	40.49	21.95	12.58	6.80	11.11	46.58	51.86	56.00	65.74	46.46	35.96
	55.75	9.75	18.81	0.68	37.54	30.76	46.94	52.00	77.87	75.82	40.59
	58.71	15.40	23.28	2.68	32.87	50.07	32.95	48.00	61.53	56.6	38.21
	60.42	15.85	24.47	2.72	24.77	12.82	52.03	68.00	65.75	78.42	40.53
	58.72	10.97	27.97	0.68	30.01	12.82	60.33	56.00	82.59	66.06	40.62
1	58.40	19.05	17.12	7.52	45.17	36.58	54.75	40.00	84.61	72.30	43.55
ITA	67.90	11.90	4.11	20.19	21.8	12.19	56.39	45.00	85.38	83.25	40.81
DA	59.23	5.88	24.66	4.69	32.08	14.63	66.55	48.00	78.21	72.66	40.66
(Ours)	67.11	6.58	6.77	44.89	74.09	46.05	87.92	64.55	50.00	74.47	52.24
ed in each domain	91.10	69.51	61.05	89.23	99.67	80.76	91.57	51.37	94.08	81.97	81.03

Comparison with Variants of our Mixup Formulation

ce Domain ModelNet (M)		ScanNet (S*)	ShapeNet (S)			
→ Tgt	$M \to S^*$	$M \!\rightarrow\! S$	$S^* \to M$	$S^* \rightarrow S$	$S \rightarrow M$	S→S*	Averag
sA (Ours)	45.31	61.36	56.67	46.63	37.02	27.19	45.70
p Sep	41.32	<u>47.98</u>	<u>56.18</u>	<u>42.19</u>	28.85	<u>36.69</u>	<u>42.20</u>
or-Mixup	41.31	41.49	50.77	38.82	30.77	36.81	40.00
at-Mixup	<u>49.20</u>	29.57	50.47	37.5	<u>33.05</u>	25.64	37.57
Mixup	50.95	28.65	51.71	34.38	32.21	40.80	39.78
of all methods	50.95	61.36	56.67	46.63	37.02	40.80	48.91

Ablation on Contribution of each Module

Variants of Our Mixup Formulation Factor-Mixup: We consider the effect of *scaling* factor while ensembling in Eq. 1.

$$F_m^{factor} = \lambda F_s + \sum_{i=1}^n \frac{1-\lambda}{n} F_{T_i}$$

Concat-Mixup:

We consider how Eq. 1 is affected when using *concatenation* instead — of summation.

	$F_m^{concat} = [\lambda F_s, \frac{1-\lambda}{n} F_{T_1},, \frac{1-\lambda}{n} F_{T_n}],$
1	$L_m^{concat} = [\lambda, 2\frac{1-\lambda}{n},, N\frac{1-\lambda}{n})]$

Inter-Mixup:

Here, we consider extending the linear interpolation as per Eq. 1 by incorporating the target domains as well.

$$F_m^T = \lambda F_{T_1} + (1 - \lambda) F_{T_2},$$
$$L_m^T = \lambda L_{T_1} + (1 - \lambda) L_{T_2}.$$

T-SNE Embedding Visualizations

