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Multi-scale self-guided attention for medical image
segmentation
Ashish Sinha and Jose Dolz

Abstract—Even though convolutional neural networks (CNNs)
are driving progress in medical image segmentation, standard
models still have some drawbacks. First, the use of multi-scale
approaches, i.e., encoder-decoder architectures, leads to a re-
dundant use of information, where similar low-level features are
extracted multiple times at multiple scales. Second, long-range
feature dependencies are not efficiently modeled, resulting in non-
optimal discriminative feature representations associated with
each semantic class. In this paper we attempt to overcome these
limitations with the proposed architecture, by capturing richer
contextual dependencies based on the use of guided self-attention
mechanisms. This approach is able to integrate local features
with their corresponding global dependencies, as well as highlight
interdependent channel maps in an adaptive manner. Further, the
additional loss between different modules guides the attention
mechanisms to neglect irrelevant information and focus on more
discriminant regions of the image by emphasizing relevant feature
associations. We evaluate the proposed model in the context of
semantic segmentation on three different datasets: abdominal
organs, cardiovascular structures and brain tumors. A series of
ablation experiments support the importance of these attention
modules in the proposed architecture. In addition, compared to
other state-of-the-art segmentation networks our model yields
better segmentation performance, increasing the accuracy of the
predictions while reducing the standard deviation. This demon-
strates the efficiency of our approach to generate precise and
reliable automatic segmentations of medical images. Our code is
made publicly available at: https://github.com/sinAshish/Multi-
Scale-Attention

Index Terms—Convolutional neural networks, Deep learning,
Medical image segmentation, Deep attention, Self-attention

I. INTRODUCTION

Semantic segmentation of medical images is a crucial step in
diagnosis, treatment and follow-up of many diseases. Despite
the automation of this task has been widely studied in the
past, manual annotations are still typically used in clinical
practice, which is a time-consuming and prone to inter and
intra-observer variability process. Thus, there is a high demand
on accurate and reliable automatic segmentation methods that
allow to improve the work flow efficiency in clinical scenarios,
alleviating the workload of radiologists and other medical
experts.

Recently, convolutional neural networks (CNNs) have
achieved state-of-the-art performance in a breadth of visual
recognition tasks, becoming very popular due to their pow-
erful, nonlinear feature extraction capabilities. These deep
models dominate the literature in medical image segmentation
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[1] and have achieved outstanding performance in a broad span
of applications, including brain [2] or cardiac [3] imaging, for
example, becoming the de facto solution for these problems.
In this scenario, fully convolutional neural networks [4] or
encoder-decoder architectures [5], [6] are typically the stan-
dard choice. These architectures are commonly composed of
a contracting path, which collapses an input image into a set
of high-level features, and an expanding path, where high-
level features are used to reconstruct a pixel-wise segmentation
mask at a single [4] or multiple upsampling steps [5], [6].
Nevertheless, despite their strong representation power, these
multi-scale approaches lead to a redundant use of information
flow, e.g., similar low-level features are extracted multiple
times at different levels within the network. Furthermore, the
discriminative power of the learned feature representations for
pixel-wise recognition may be insufficient for some challeng-
ing tasks, such as medical image segmentation.

Recent works to improve the discriminative ability of fea-
ture representations include the use of multi-scale context
fusion [7], [8], [9], [10]. Zhao et al. [8] proposed a pyramid
network that exploited global information at different scales
by aggregating feature maps generated by multiple dilated
convolutional blocks. Aggregation of contextual multi-scale
information can also be achieved through pooling operations
[11]. Even though these strategies may help to capture objects
at different scales, contextual dependencies for all image
regions are homogeneous and non-adaptive, ignoring the dif-
ference between local representation and contextual depen-
dencies for different categories. Further, these multi-context
representations are manually designed, lacking flexibility to
model the multi-context representations. This makes that long-
range object relationships in the whole image cannot be fully
leveraged in these approaches, which is of pivotal importance
in many medical imaging segmentation problems.

Alternatively, attention mechanisms have been widely stud-
ied in deep CNNs for many computer vision tasks in order to
efficiently integrate local and global features, including human
pose estimation [12], emotion recognition [13], text detection
[14], object detection [15] and classification [16]. Unlike stan-
dard multi-scale features fusion approaches, which compress
an entire image into a static representation, attention allows
the network to focus on the most relevant features without
additional supervision, avoiding the use of multiple similar
feature maps and highlighting salient features that are useful
for a given task. Semantic segmentation networks have also
benefited from attention modules, which has resulted in en-
hanced models for pixel-wise recognition tasks [17], [18], [19],
[20], [21], [22]. For example, Chen et al. [17] proposed an
attention mechanism to weight multi-scale features extracted
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at different scales in the context of natural scene segmentation.
This method improved the segmentation performance over
classical average and max-pooling techniques to merge multi-
scale features predictions.

Despite the growing interest on integrating attention mecha-
nisms in image segmentation networks for natural scenes, their
adoption in medical images remains scarce [23], [24], [25],
[26], [27], being limited to simple attention models. Thus, in
this work, we explore more complex attention mechanisms that
can boost the performance of standard deep networks for the
task of medical image segmentation. Specifically, we propose
a multi-scale guided attention network for medical image
segmentation. First, the multi-scale approach generates stacks
at different resolutions containing different semantics. While
lower-level stacks focus on local appearance, higher-level
stacks will encode global representations. This multi-scale
strategy encourages that attention maps generated at different
resolutions encode different semantic information. Then, at
each scale, a stack of attention modules will gradually remove
noisy areas and emphasize those regions that are more relevant
to the semantic descriptions of the targets. Each attention
module contains two independent self-attention mechanisms,
which focus on modelling position and channel feature depen-
dencies, respectively. This duple allows to model wider and
richer contextual representations and improve dependencies
between channel maps, resulting in enhanced feature represen-
tations. We validate our method in three different segmentation
tasks: abdominal organ, cardiovascular structures and brain
tumor. Results show that the proposed architecture improves
the segmentation performance by successfully modeling rich
contextual dependencies over local features.

II. RELATED WORK

A. Medical image segmentation
Even though segmentation of medical images has been

widely studied in the past [28], [29] it is undeniable that CNNs
are driving progress in this field, leading to outstanding perfor-
mances in many applications. Most available medical image
segmentation architectures are inspired from the well-known
fully convolutional neural network (FCN) [4] or UNet [5].
In FCN the fully connected layers of standard classification
CNNS are replaced by convolutional layers to achieve dense
pixel prediction at one forward step. To recover the original
resolution of the input image, the prediction is upsampled in
a single step. Further, to improve the prediction capabilities,
skip connections are included in the network by employing the
intermediate feature maps. On the other hand, UNet contains
contractive and expansive paths created using the combination
of convolutional layers with pooling and upsampling layers.
Skip connections are used to concatenate the features from
contractive and expansive path layers. Many extensions of
these networks have been proposed to solve pixel-wise seg-
mentation problems in a wide range of applications [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39].

B. Deep attention
Attention mechanisms aim at emphasizing important local

regions captured in local features and filtering irrelevant infor-

mation transferred by global features, improving the modeling
of long-range dependencies. These modules have therefore
become an essential part of models that need to capture global
dependencies. The integration of these attention modules has
been proved very successful in many vision problems, such
as image captioning [40], image question-answering [41] or
classification [42]. Self-attention [43], [44], [45] has recently
attracted the attention of researchers, as it exhibits a good
ability to model long-range dependencies while maintaining
computational and statistical efficiency. In these modules, the
response at each position is calculated by attending to all
positions and taking their weighted average in an embedding
space. For image vision problems, [18], [19] integrated self-
attention to model the relation of local features with their cor-
responding global dependencies. For instance, the point-wise
spatial attention network (PSANet) proposed in [18] allows
a flexible and dynamic aggregation of long-range contextual
information by connecting each position in the feature map
with all the others through self-adaptive attention maps.

Recent works have indicated that attention features gener-
ated in a single step may still contain noise introduced from
regions that are irrelevant for a given class, leading to sub-
optimal results [41], [46]. To overcome this issue, some works
have investigated the use of progressive multiple attention
layers in the context of visual question answering [41] or zero
shot learning [46]. This strategy gradually filters undesired
noise and emphasizes the regions highly relevant for the class
semantic representations. To the best of our knowledge, the
application of stacked attention modules remains unexplored
in semantic segmentation.

C. Medical image segmentation with deep attention

Even though attention mechanisms are becoming popular
on many vision problems, the literature on medical image
segmentation with attention remains scarce, with simple at-
tention modules [23], [24], [25], [26], [27]. Wang et al. [23]
employed attention modules at multiple resolutions to combine
local deep attention features (DAF) with global context for
prostate segmentation on Ultrasound images. To model long-
range dependencies local and global features were combined
in a simple attention module, which contains three convo-
lutional layers followed by a softmax function to create the
attention map. A similar attention module, composed of two
convolutional layers followed by a softmax, was integrated in
a hierarchical aggregation framework integrated in UNet for
left atrial segmentation [24]. More recently, additive attention
gate modules were integrated in the skip connections of
the decoding path of UNet with the goal of better model
complimentary information from the encoder [25].

III. METHODS

A. Overview

Target structures on medical imaging typically present intra
and inter-class diversity on size, shape and texture, particu-
larly if images are processed in 2D. Traditional CNNs for
segmentation have a local receptive field, which results in
the generation of local feature representations. As long-range
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Fig. 1: Overview of the proposed multi-scale guided attention
network. We resort to ResNet-101 to extract dense local
features. Four feature maps with different sizes –acquired from
the outputs of [Res-2, Res-3, Res-4, Res-5]– are employed.
The guided attention modules will generate attentive features
at multiple scales, removing noisy areas and helping the
network to emphasize the regions that are more relevant to
the semantic classes.

contextual information is not properly encoded, local features
representations may lead to potential differences between fea-
tures corresponding to the pixels with the same label [19]. This
may introduce intra-class inconsistency that can ultimately
impact on the recognition performance [47]. To tackle with
this problem, we investigate attention mechanisms to build
associations between features. First, global context is captured
by employing a multi-scale strategy. Then, learned features
at multiple scales are fed into the guided attention modules,
which are composed by a stack of spatial and channel self-
attention modules. While the spatial and channel self-attention
modules will help to adaptively integrate local features with
their global dependencies, the stack of attention modules will
help to gradually filter noise out emphasizing on relevant
information. The overview of the proposed framework is
depicted in Figure 1.

B. Multi-scale attention maps

Multi-scale features are known to be useful in computer
vision problems even before the deep learning era [48]. In
the context of deep segmentation networks, the integration of
multi-scale features has demonstrated astonishing performance
[17], [49], [50]. Inspired by these works we make use of
learned features at multiple scales, which help to encode both
global and local context. Specifically we follow the multi-scale
strategy recently proposed in [23]. In this setting, features at
multiple scales are denoted as Fs, where s indicates the level in
the architecture (Fig. 1). Since features come at different reso-
lutions for each level s, they are upsampled to a common reso-
lution by employing bilinear interpolation, leading to enlarged
feature maps F ′s. Then, F ′s from all the scales are concatenated

forming a tensor that is convolved to create a common multi-
scale feature map, FMS = conv([F ′0, F

′
1, F

′
2, F

′
3]). Thus, FMS

encodes low-level detail information from shallow layers as
well as high-level semantics learned in deeper layers. Then,
this new multi-scale feature map is combined with each of
the feature maps at different scales s and fed into the guided
attention modules to generate the attention features As:

As = AttMods(conv([F
′
s, FMS ])) (1)

where AttMod represents each guided attention module
(Section III-D). As the multi-scale feature maps FMS are
combined at each individual layer, complementary low-level
information and high-level semantics from FMS are encoded
jointly, resulting in a more powerful representation. In the
following sections we detail how the attentive features As are
obtained.

C. Spatial and Channel self-attention modules

As introduced earlier, receptive fields in traditional segmen-
tation deep models are reduced to a local vicinity. This limits
the capabilities of modeling wider and richer contextual repre-
sentations. On the other hand, channel maps can be considered
as class-specific responses, where different semantic responses
are associated with each other. Thus, another strategy to
enhance the feature representation of specific semantics is
to improve the dependencies between channel maps [51]. To
address these limitations of standard CNNs we employ the
position and channel attention modules recently proposed in
[19], which are depicted in Figure 2.

Position attention module (PAM): Let denote F ∈
RC×W×H an input feature map to the attention module, where
C,W,H represent the channel, width and height dimensions,
respectively. In the upper branch F is passed through a con-
volutional block, resulting in a feature map F p

0 ∈ RC′×W×H ,
where C ′ is equal to C/81. Then, F p

0 is reshaped to a feature
map of shape (W × H) × C ′. In the second branch, the
input feature map F follows the same operations and then
is transposed, resulting in F p

1 ∈ RC′×(W×H). Both maps are
multiplied and softmax is applied on the resulted matrix to
generate the spatial attention map Sp ∈ R(W×H)×(W×H):

spi,j =
exp (F p

0,i · F
p
1,j)∑W×H

i=1 exp (F p
0,i · F

p
1,j)

(2)

where spi,j evaluates the impact of the ith position on the
jth position. The input F is fed into a different convolutional
block in the third branch, resulting in F p

2 ∈ RC×(W×H), which
has the same shape as F . As in the other branches, F p

2 is
reshaped becoming F p

2 ∈ RC×(W×H). Then it is multiplied
by a permuted version of the spatial attention map S, whose
output is reshaped to a RC×(W×H). The attention feature map
corresponding to the position attention module, i.e., FPAM ,
can be therefore formulated as follows:

1We use the superscript p to indicate that the feature map belongs to the
position attention module. Similarly, we will employ the superscript c for the
channel attention module features.
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FPAM,j = λp

W×H∑
i=1

spijF
p
2,j + Fj (3)

As in [19], the value of λp is initialized to 0 and it
is gradually learned to give more importance to the spatial
attention map. Thus, the position attention module selectively
aggregates global context to the learned features, guided by
the spatial attention map.
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Fig. 2: Details of the position and channel attention modules
inspired by [19].

Channel attention module (CAM): The pipeline of the
channel attention module is depicted at the bottom of Figure 2.
The input F ∈ RC×W×H is reshaped in the first two branches
of the CAM, and permuted in the second branch, leading to
F c
0 ∈ R(W×H)×C and F c

1 ∈ RC×(W×H), respectively. Then,
we perform a matrix multiplication between F c

0 and F c
1 , and

obtain the channel attention map Sc ∈ RC×C as:

sci,j =
exp (F c

0,i · F c
1,j)∑C

i=1 exp (F
c
0,i · F c

1,j)
(4)

where the impact of the ith channel on the jth is given by
sci,j . This is then multiplied by a transposed version of the
input F , i.e., F c

2 , whose result is reshaped to RC×(W×H).
Then, the final channel attention map is obtained as:

FCAM,j = λc

C∑
i=1

scijF
c
2,j + Fj (5)

where λc controls the importance of the channel attention
map over the input feature map F . Similarly to λp, λc is
initially set to 0 and gradually learned. This formulation
aggregates weighted versions of the features of all the channels
into the original features, highlighting class-dependent feature

maps and increasing feature discriminability between classes.
At the end of both attention modules, the new generated
features are fed into a convolutional layer before performing an
element-wise sum operation to generate the position-channel
attention features.

D. Guiding attention

Inspired by recent work to stack attention modules in
the context of image classification [46], we propose to add
progressive refinement of attentive features through sequential
refinement modules. The intuition is that this sequential re-
finement will progressively weight the importance of different
local regions, while masking out irrelevant noise. Particularly,
given the feature map F at the input of the guided attention
module at scale s–generated by concatenating FMS and F ′s–,
it generates attention features via a multi-step refinement (Fig.
3). In the first step, F is used by the position and channel at-
tention modules to generate self-attention features. In parallel,
we integrate an encoder-decoder network that compresses the
input features F into a compacted representation in the latent
space [46]. The objective is that the class information can
be embedded into the subsequent guided attention modules
by forcing the latent representation of encoder-decoders to be
close, which is formulated as:

LG =

M−1∑
i

‖Ei(F
i−1
A )− Ei+1(F

i
A)‖22 (6)

where Ei(·) is the encoded representation of the i-th
encoder-decoder network, F i

A denotes the attention features
generated after the i-th dual attention module and M the num-
ber of iterations. Note that F i−1

A are the features at the input
of the semantic guided attention module, F . Specifically, the
feature maps reconstructed in the first encoder-decoder (n = 0)
are combined with the self-attention features generated by
the first attention module through a matrix-multiplication to
generate FSA. In addition, to ensure that the reconstructed
features correspond to the features at the input of the position-
channel attention modules, the output of the encoders are
forced to be close to their input:

LRec =

M∑
i

‖Fi − F̂i‖22 (7)

where F̂i are the reconstructed feature maps, i.e., Di(Ei(F ))
of the i-th encoder-decoder networks.

As the guided attention module is applied at multiple scales,
the combined guided loss for all the modules will be:

LGTotal
=

S∑
s=0

Ls
G (8)

Similarly, the total reconstruction loss becomes:

LRecTotal
=

S∑
s=0

Ls
Rec (9)
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Fig. 3: An illustration of the semantic guided attention module
with 2 refinement steps. For each scale s this module provides
a set of attentive features, i.e., As.

where LRec1 and LRec2 are the reconstruction losses for the
encoder-decoder architectures in the first and second block of
the guided attention module.

E. Deep supervision

While the attention modules do not require auxiliary ob-
jective functions, we found that the use of extra supervision
at each scale [52] improved the segmentation performance of
the proposed model, which is in line with similar works in the
literature [17], [23], [25].

LSegTotal
=

S∑
s=0

Ls
SegF ′ +

S∑
s=0

Ls
SegA (10)

where the first term refers to the segmentation results at the
raw features F ′s and the second term evaluates the segmenta-
tion result provided by the attention features. In all the cases,
the multi-class cross-entropy between the network prediction
and the ground truth labels is employed as segmentation loss.
The final objective function to optimize becomes:

LTotal = αLSegTotal
+ βLGTotal

+ γLRecTotal
(11)

where α, β and γ control the importance of each term in
the main loss function.

IV. EXPERIMENTS

A. Experimental setting
Datasets: We employ three public segmentation bench-

marks to evaluate our method. First, the abdominal MRI
dataset from the Combined Healthy Abdominal Organ Seg-
mentation (CHAOS) Challenge [53], [54], [55]. Particularly,
we focus on the segmentation of abdominal organs (spleen,
liver and kidneys) on MRI (T1-DUAL in phase), which
includes scans from 20 subjects for training with their corre-
sponding ground truth annotations, and 20 for testing without
annotations. Scans have a resolution of 256×256 pixels per
slice, and between 26 and 50 slices. Since testing labels are
not provided within the dataset, we employed the training
dataset for our experiments, splitting it into subsets of 13,
2 and 5 subjects that were used for training, validation and

testing. We repeated the process 3 times selecting different
subjects and report the average results over the three folds.
Then, we evaluated our approach on the task of whole-heart
and great vessel segmentation from 3D Cardiovascular MRI
in congenital heart disease, provided in the HVSMR 2016
Challenge [56]. Particularly, the myocardium and the blood
pool are targeted in this scenario. The training set consists
on 10 MRI Axial scans with their corresponding manual seg-
mentations. Image dimensions varied across subjects, with an
average of 390 × 390 × 165 voxel volumes. We report results
on the training data, by employing a 5-fold cross-validation
strategy, where each fold contains 6 scans for training, 2 for
validation and 2 for testing. To increase the variability of the
data, we rotate, flipped and mirrored the images randomly,
but without augmenting the dataset size. For the third task,
we employed the brain segmentation dataset provided in the
Medical Segmentation Decathlon Challenge2. Particularly, this
dataset contains multimodal multisite MRI data (FLAIR, T1w,
T1gd,T2w) from the BRATS’16 and BRATS’17 Challenges
[57], [58], [59]. The focus of this dataset is on the segmenta-
tion of necrotic (TC) and active areas (ET), as well as oedema
(ED) in brain gliomas. We employed 484 scans that were split
into training (388 scans), validation (48 scans) and testing
(48 scans). Similarly to previous tasks, we rotate, flipped and
mirrored the images randomly, but without augmenting the
dataset size.

Network architectures: The multi-scale strategy in the
proposed network is based on the recently work in [23], and is
considered as the lower baseline in our experiments. First, we
perform an ablation study on the different proposed modules
to evaluate the impact of each choice in the segmentation
performance. The first two networks –i.e., Proposed (PAM)
and Proposed (CAM)– extend the baseline by replacing the
attention module by either the spatial or the channel self-
attention module (Fig. 2), respectively. Then, both modules
are combined simultaneously, leading to the Proposed (DANet)
model. In the next model –i.e., Proposed (MS-Dual)– the
attention features generated by the dual attention module are
refined in a multi-step process, where a second dual attention
module is included. Last, the proposed architecture, referred
to as Proposed (MS-Dual-Guided) extends the Proposed (MS-
Dual) model by incorporating the semantic guidance (Fig. 3).
We also evaluated the impact of different elements, other than
the attention modules, on the proposed multi-scale architec-
tures. First, we remove the deep supervision (first term in eq.
10) on our model. Second, instead of using an encoder-decoder
structure to reconstruct the input features at each dual attention
module, we remove this and replace the eq. 7 by the mean error
square loss between the input and the output of each attention
module. This models is referred to as w/out encoder-decoder
(dist). And last, we also investigated the effect of not having
an encoder-decoder, i.e., no guidance, in the refinements steps,
which is referred to as w/out encoder-decoder). In addition,
we evaluated the impact of having multiple refinements steps
n, with n = 1, 2, 3 and 5.

Furthermore we compared the performance of the pro-

2http://medicaldecathlon.com
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posed network to other state-of-the-art architectures integrating
attention: Attention UNet [25], DANet [19] and Pyramidal
Attention Network (PAN) [20].

Training and implementation details: We train all the
networks using Adam optimizer with mini-batch of size 8,
and with β1 and β2 set to 0.9 and 0.99, respectively. While
most of the networks converged during the first 250 epochs,
we found that PAN [20] and DANet [19] needed around
400 epochs to achieve the best results. The learning rate is
initially set to 0.001 and multiplied by 0.5 after 50 epochs
without improvement on the validation set. As a segmentation
objective function, we employ the cross-entropy error at each
pixel over all the categories for all the networks. Furthermore,
as introduced in Section III, we use the objective function
in eq. (11) in the proposed architecture, with α, β and γ
set empirically to 1, 0.25 and 0.1, respectively. As input of
the networks we employed 2D axial images of size 256 ×
256. Experiments were performed in a server equipped with
a Titan V. The code of our model is made publicly available
at https://github.com/sinAshish/Multi-Scale-Attention.

Evaluation: Similarity between ground truth and CNN
segmentations is assessed by employing several comparison
metrics. First, we resort to the widely used Dice similarity
coefficient (DSC) to compare volumes based on their overlap.
Further, we also assess the segmentation performance based
on the volume similarity (VS). Additionally, to measure the
sensitivity to segmentation outline, we considered the use of
the mean surface distance (MSD). The formulation of these
metrics is detailed in the Supplemental materials. Since inter-
slice distances and x-y spacing for each individual scan are
not provided, we report these results on voxels.

B. Results

Ablation study on the proposed attention modules: To
validate the individual contribution of different components
to the segmentation performance, we perform an ablation
experiment under different settings. Table I reports the results
of the different attention modules. Compared to the baseline,
we observe that by integrating either a spatial (PAM) or
an attention module (CAM) at each scale in the baseline
architecture the performance improves between 2-3% in terms
of overlapping and volume similarity, and between 12-18% in
terms of surface distances, as average. On the other hand, hav-
ing both modules in parallel –i.e., Proposed (DANet)– brings
slightly better results in terms of DSC, but achieves lower
performance when employing the surface distance metric.
However, despite the lower average performance on the MSD,
the proposed DANet model still achieves better results in 3 out
of 4 structures compared to the channel attention model. This
trend is repeated on the DSC metric, where DANet surpasses
the proposed CAM architecture in the same 3 structures: liver
and both left and right kidneys. This suggests that, even though
both spatial and channel attention bring an improvement on
the performance, the channel attention module contributes
more than the spatial attention when they are combined. If
features generated by the proposed DANet model are refined
in a second step –network referred to as Proposed(MS-Dual)–

the average results are further improved by nearly 0.7% and
10% in volume and distance-based metrics, respectively. Last,
the introduction of the semantic-guided loss –Proposed (MS-
Dual-Guided)– results in an additional boost on performance,
yielding to the best values in the three metrics: 86.75%(DSC),
93.85%(VS) and 0.66 voxels (MSD). These results represent
an improvement of 4.5%, 4% and 26% in DSC, VS and
MSD, respectively, compared to the baseline in [23], showing
the efficiency of the proposed attention network compared to
individual attention components.

Method DSC (%) VS (%) MSD (voxels)

Baseline (DAF [23]) 82.48 (±6.06) 89.68 (±4.48) 0.92 (±0.33)
Proposed (PAM) 84.46 (±6.68) 91.84 (±4.77) 0.80 (±0.43)
Proposed (CAM) 85.08 (±5.62) 92.18 (±5.07) 0.74 (±0.32)
Proposed (DANet) 85.52 (±5.86) 92.07 (±5.23) 0.77 (±0.41)
Proposed (MS-Dual) 86.17 (±5.78) 92.74 (±4.76) 0.67 (±0.30)
Proposed (MS-Dual-Guided) 86.75 (±5.05) 93.85 (±3.50) 0.66 (±0.27)

TABLE I: Ablation study on different attention modules on
the Chaos dataset. The values show the average result of the
experiments averaged over the 3 folds. Best and second best
results are represented in red and blue bold, respectively.

Proposed (MS-Dual and MS-Dual-Guided)

Model DSC (%) VS (%) MSD (voxels)

1 Refinement step
MS-Dual (No guidance) 85.75 (±5.08) 92.72 (±3.65) 0.71 (±0.28)
MS-Dual-Guided 86.34 (±5.17) 93.47 (±3.78) 0.68 (±0.29)
w/out deep supervision 84.71 (±4.86) 91.39 (±3.55) 0.75 (±0.17)
w/out encoder-decoder (dist) 85.92 (±5.17) 92.94 (±4.04) 0.76 (±0.34)

2 Refinement steps
MS-Dual (No guidance) 86.17 (±5.78) 92.74 (±4.76) 0.67 (±0.30)
MS-Dual-Guided 86.75 (±5.05) 93.85 (±3.50) 0.66 (±0.27)
w/out deep supervision 83.51 (±5.52) 91.80 (±3.66) 0.75 (±0.16)
w/out encoder-decoder (dist) 86.67 (±4.98) 93.67 (±3.38) 0.77 (±0.31)

3 Refinement steps
MS-Dual (No guidance) 86.26 (±5.71) 93.62 (±4.72) 0.71 (±0.34)
MS-Dual-Guided 86.14 (±5.89) 93.50 (±3.98) 0.67 (±0.36)
w/out deep supervision 83.22 (±5.72) 90.95 (±4.31) 0.80 (±0.17)
w/out encoder-decoder (dist) 85.88 (±4.78) 93.23 (±3.71) 0.79 (±0.39)

5 Refinement steps
MS-Dual (No guidance) 86.33 (±4.98) 93.74 (±3.91) 0.71 (±0.31)
MS-Dual-Guided 86.30 (±5.05) 93.16 (±4.11) 0.68 (±0.22)
w/out deep supervision 83.88 (±5.78) 91.03 (±3.66) 0.87 (±0.34)
w/out encoder-decoder (dist) 86.16 (±4.23) 92.98 (±2.93) 0.80 (±0.31)

TABLE II: Ablation study on different elements on the MS-
Dual and MS-Dual-Guided architectures evaluated on the
Chaos dataset. The values show the average result of the
experiments on the 3 folds. Best results are represented in
red bold, while blue is used to highlight the second best
performance.

The impact of the refinement steps, as well as of the several
elements on both MS-Dual and MS-Dual-Guided models is
reported in Table II. First, we can observe that increasing
the number of refinement steps does not typically improve
the performance of the methods. Indeed, best results are
often obtained with only two attention guided modules. We
argue that progressively refining feature maps may produce
an excessive focus to the attentive regions, leading to strongly
mined attentive features. This has an adverse effect, as the
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attentive features may concentrate in the most discriminative
areas, not covering the whole extent of the object. Further, we
observe that the proposed model including guided-attention
outperforms all the variants, particularly in the distance-based
metric. In addition, we provide a comparison in terms of
complexity, whose results are depicted in Table VIII, in
Supplemental Materials.

Comparison to state-of-the-art: The experimental results
obtained by several state-of-the-art segmentation networks are
reported in Table III. In the first dataset (top), compared to
other networks that were proposed in the context of medical
image segmentation –i.e.,UNet [5], Attention UNet [25] and
DAF [23]– our network achieves a mean improvement of
5.6%, 4.3% and 2.0% (in terms of DSC), 4.9%, 4.2% and
2.1% (on VS) and 25%, 26% and 6% (on MSD), respectively.
This difference in performance could be explained by the fact
that the attention modules integrated in [23] and [25] are much
simpler than those proposed in our architecture. On the other
hand, attention modules on general computer vision tasks have
attracted more attention, resulting in more elaborated strategies
which typically achieve better segmentation results. Among
these architectures, the PAN model [20] with ResNet101 as
backbone –the same as ours– achieved the best results for
segmentation networks proposed for natural scenes. Despite
these competitive results, the proposed model still outperforms
the PAN architecture by 2.4%, 1.9% and 12% in DSC,
VS and MSD. As PAN [20] also employed a multi-scale
architecture, these differences suggest that the use of dual
self-attention and a guided refinement module can actually
improve the performance of segmentation networks. Similarly,
the proposed model outperforms other networks in the second
and third datasets (middle and bottom), indicating that it can be
broadly applied to segmentation of medical images in general.
Individual per-class scores for both datasets are given in Tables
V, VI and VII in Supplemental Material. In addition to these
values, we also depict the distribution of DSC, VS and MSD
values on the 15 subjects used for evaluation in CHAOS for
all the models (Fig. 7 in Supplemental Material).

Qualitative evaluation: To visualize the impact of the
different attention modules, Fig. 4 displays the segmentation
results on three CHAOS subjects. Despite the similar results
reported on Table III for several architectures, the qualitative
results depict interesting findings. First, we can observe that
UNet typically under-segments certain organs and gets con-
fused easily. For example, in the second row it confused the
small bowels with the spleen, while the spleen is not even
present in that slice. Integrating attention can overcome some
of these limitations and improve the segmentation performance
by focusing the attention to relevant areas. This can be
observed in the results obtained by the other networks, which,
up to some extent, reduce the amount of false positives.
Nevertheless, it produces smoother segmentations, resulting
in a loss of fine grained details. An interesting result is the
segmentation in the last row, where all the models except the
proposed network get confused to segment the left kidney.
While DANet and PAN models confuse the left kidney with
the right one, DAF is not able to detect any relevant region
related to the kidneys in that area. In addition, both UNet and

CHAOS

Model DSC VS MSD

UNet [5] 81.14 (±7.88) 89.01 (±4.82) 0.91 (±0.49)
DANet [19] 83.89 (±9.54) 91.42 (±4.52) 0.78 (±0.23)
PAN (ResNet34) [20] 82.70 (±6.51) 90.32 (±5.27) 0.86 (±0.29)
PAN (ResNet101)[20] 84.34 (±6.17) 91.93 (±4.71) 0.78 (±0.31)
DAF [23] 82.48 (±6.06) 89.68 (±4.48) 0.92 (±0.33)
UNet Attention [25] 84.77 (±5.27) 91.79 (±3.53) 0.72 (±0.24)
Proposed (MS-Dual-Guided) 86.75 (±5.05) 93.85 (±3.50) 0.66 (±0.27)

HSVM

DSC VS MSD

UNet [5] 79.80 (±6.72) 93.41 (±6.44) 1.68 (±1.28)
DANet [19] 82.55 (±5.91) 94.65 (±4.45) 1.27 (±0.46)
PAN (ResNet34) [20] 80.97 (±7.76) 93.76 (±5.85) 1.62 (±1.19)
PAN (ResNet101)[20] 82.26 (±5.08) 94.33 (±3.69) 1.24 (±0.38)
DAF [23] 81.78 (±5.71) 94.31 (±3.21) 1.48 (±0.50)
UNet Attention [25] 81.58 (±6.84) 94.61 (±4.17) 1.25 (±0.42)
Proposed (MS-Dual-Guided) 83.20 (±4.93) 94.45 (±2.39) 1.19 (±0.37)

BRATS’18

DSC VS MSD

UNet [5] 73.65 (±12.39) 87.72 (±8.70) 1.65 (±0.57)
DANet [19] 79.09 (±10.89) 93.32 (±6.99) 0.95 (±0.33)
PAN (ResNet34) [20] 74.12 (±12.76) 89.85 (±9.93) 1.42 (±0.52)
PAN (ResNet101)[20] 76.89 (±11.53) 91.76 (±8.11) 1.17 (±0.47)
DAF [23] 76.78 (±11.77) 90.58 (±9.03) 1.21 (±0.46)
UNet Attention [25] 78.61 (±10.58) 92.66 (±6.86) 1.02 (±0.40)
Proposed (MS-Dual-Guided) 80.37 (±10.74) 93.08 (±7.20) 0.90 (±0.36)

TABLE III: Comparison to other state-of-the-art architectures
on the four analyzed datasets. Best and second best results are
represented in red and blue bold, respectively.

UNet with attention models generate segmentations of the left
kidney that contain three organs, i.e., left and right kidneys and
spleen, which is anatomically not plausible. Unlike all these
models, the proposed architecture does not get distracted by
ambiguous regions and some misclassified structures are now
correctly classified.

Similar results are observed on the segmentations obtained
in the BRATS’18 images (Fig. 5). Particularly, we can see
that the proposed network obtains finer details than the other
architectures. For example, small ramifications on the oedema
(in green) are better captured by the proposed model (sec-
ond row). Likewise, segmentation of necrotic areas (in red)
achieved by our method is closer to the ground truth, specially
when the region has a complex shape (first row). These visual
results indicate that our approach can successfully recover
finer segmentation details, while avoiding getting distracted
in ambiguous regions. The selective integration of spatial
information and among channel maps followed by a guided
attention module helps to capture context information. This
demonstrates that the proposed multi-scale guided attention
model can efficiently encode complimentary information to
accurately segment medical images.

Visual inspection of feature maps: Showing the per-
formance difference through ablation studies and quantitative
evaluations alone may not be enough to fully understand
the benefits and behaviour of novel models. Although the
proposed modules contribute to the performance improvement,
as shown in the results, it is interesting to investigate whether
different modules work as expected. To this end, we analyze
some attended feature maps from both the spatial and channel
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Ground 
Truth UNet DANet

PAN
(ResNet34)

PAN
(ResNet101) DAF Attention 

UNet
Proposed

Input 
Image

Fig. 4: Results on three subjects on the CHAOS Challenge dataset. The proposed multi-scale guided attention network achieves
qualitatively better results than other state-of-the-art networks that also integrate attention modules.

Input MRI GT UNet DANet PAN 
(ResNet-34)

PAN 
(ResNet-101)

UNet Attention Proposed

Fig. 5: Results on three subjects on the BRATS Challenge dataset. In these figures, the following tumor structures are depicted:
oedema (green), enhancing core (yellow) and necrotic or tumor core (red).

attention modules (Fig. 6). We find that the response of specific
semantic classes is more noticeable after the second guided
attention modules, i.e., PAM 2 and CAM 2 attentive features.
While spatial and channel attention can highlight specific class
semantics in the first step of the guided module (second and
third column), some non-targeted regions are still highlighted
on the semantic maps. Furthermore, highest values are also
more spread over the entire image. Contrary, the proposed
guided attention module generates features (fourth and fifth
columns) that better focus on the specific regions of the
structures of interest. Particularly, it can be observed that there
exist feature maps whose highlighted areas concentrate on a
single organ, avoiding ambiguous regions that might result on
misclassification of some regions.

V. CONCLUSION

In this work, we introduced a novel attention architecture
for the task of medical image segmentation. This model incor-
porates a multi-scale strategy to combine semantic information
at different levels and self-attention modules to progressively
aggregate relevant contextual features. Last, a guided refine-
ment module filters noisy regions and help the network to
focus on relevant class-specific regions in the image. To
validate our approach we conducted experiments on three
different segmentation tasks: abdominal organ, cardiovascular
structures and brain tumor. We provided extensive experiments
to evaluate the impact of the individual components of the
proposed architecture. Besides, we compared our model to
existing approaches that integrate attention, which have been
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Fig. 6: Visualization results of the channel maps. For each
row, we show an input image, and the corresponding channel
maps from the outputs of spatial (PAM) and channel (CAM)
attention module at guided module of the Fig. 3.

recently proposed for natural scene [19], [20] and medical
image [5], [23], [25] segmentation. Experiment results showed
that the proposed model outperformed all previous approaches
both quantitative and qualitatively, which may be explained by
the enhanced ability to model rich contextual dependencies
over local features. This demonstrates the efficiency of our
approach to provide precise and reliable automatic segmenta-
tions of medical images.
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Supplemental Materials

Evaluation metrics: formulation
In this section, we give the formal definition of the metrics

employed to evaluate the proposed architecture.
a) Dice Similarity Coefficient (DSC): Given two vol-

umes A and B, their DSC can be defined as:

DSC =
2 |A ∩B|
|A|+ |B|

(12)

In this metric, values close to 1 indicate high degree of
overlapping, whereas near 0 represent not overlapping at all.

b) Volume Similarity (VS): Further, we also assess the
segmentation performance based on the volume similarity,
which is formulated as:

VS = 1− abs(A−B)/(A+B) (13)

c) Mean Surface Distance (MSD): The MSD between
contours A and B is defined as follows:

MSD =
1

|A|+ |B|

(∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(b, a)

)
(14)

MSD =
1

|A|+ |B|

(∑
a∈A

d(a, b) +
∑
b∈B

d(b, a)

)
(15)

where d(a, b) is the distance between a point a on the
surface A and the surface B, which is given by the minimum
of the Euclidean norm:

d(a,B) = min
b∈B
‖a− b‖22 (16)

Additional results
Tables IV, V and VI report the extended version of the

experimental results on the ablation study and comparison
to other state-of-the-art networks. In these tables, individual
results on single organs are also included to provide the reader
a wider view of the performance of the different methods.
We can observe that the proposed architecture is consistently
outperforming other models, ranking either first or second
in almost all the organs for all the evaluation metrics. The
only exception is the result obtained for liver segmentation in
terms of volume similarity, where all the models obtain almost
identical results.

In addition to the values reported on Tables IV and V in the
Supplemental Material, we also depict the distribution of DSC,
VS and MSD values on the 15 subjects used for evaluation for
all the models (Fig. 7). In these plots, we can first observe the
impact of the different attention modules in the segmentation
performance of the proposed model. As we progressively in-
clude the proposed attention modules in the baseline network,
the segmentation performance improves, which is reflected in
a better distribution of segmentation accuracy values with a
smaller variance. This difference on results distribution is more
prominent when comparing the proposed network with other

state-of-the-art networks, which are represented in bluish box
plots. We can also observe that this pattern is constant across
organs and metrics, suggesting that the proposed attention
network achieves better and more robust segmentation results
than current state-of-the-art architectures.

(a) Dice Similarity coefficient (%)

(b) Volume similarity (%)

(c) Average surface distance (voxels)

Fig. 7: These plots depict the distributions of the different
evaluation metrics for the four organs segmented. Bluish
colors represent the results obtained by other state-of-the-art
networks, whereas the results obtained by our proposed models
are displayed in with the brownish boxplots.

1) Convergence: We have also compared the different ar-
chitectures in terms of convergence, whose results are depicted
in Fig. 8. Particularly, the mean DSC value over the four
structures on one of the validation folds is shown for each
of the networks. It can be observed that, even though most
of the networks achieve results which may be considered
‘similar’ –up to some extent– the convergence behaviour is
totally different. While there are three networks with similar
convergence curves –i.e., UNet, DANet and DAF–, PAN needs
more iterations to convergence, ultimately performing better
than these networks after nearly 400 epochs. On the other
hand, we found that attention UNet and the proposed network
presented the fastest convergence, achieving their best results
at epoch 48 and 73, respectively.
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DSC (%)

Method Liver Kidney R Kidney L Spleen Mean

Baseline (DAF [23]) 91.66 (±2.99) 79.28 (±18.68) 83.63 (±7.56) 75.35 (±20.41) 82.48 (±6.06)
Proposed (PAM) 91.89 (±4.29) 85.47 (±7.04) 86.84 (±6.53) 73.65 (±22.62) 84.46 (±6.68)
Proposed (CAM) 92.58 (±2.65) 84.52 (±9.34) 86.38 (±6.27) 76.84 (±20.56) 85.08 (±5.62)
Proposed (DANet) 92.60 (±3.20) 85.29 (±7.96) 87.74 (±6.37) 76.44 (±22.17) 85.52 (±5.86)
Proposed (MS-Dual) 92.62 (±3.08) 86.29 (±5.98) 88.82 (±4.84) 76.96 (±19.87) 86.17 (±5.78)
Proposed (MS-Dual-Guided) 92.46 (±2.82) 87.96 (±6.46) 88.01 (±6.16) 78.61 (±18.69) 86.75 (±5.05)

Volume similarity (VS) (%)

Liver Kidney R Kidney L Spleen Mean

Proposed( DAF [23]) 96.69 (±3.21) 86.75 (±16.41) 90.29 (±8.39) 84.98 (±14.42) 89.68 (±4.48)
Proposed (PAM) 96.62 (±4.62) 92.83 (±7.43) 93.96 (±6.46) 83.93 (±20.54) 91.84 (±4.77)
Proposed (CAM) 97.25 (±2.95) 93.78 (±6.04) 93.98 (±5.48) 83.72 (±20.97) 92.18 (±5.07)
Proposed (DANet) 97.04 (±3.03) 94.50 (±5.96) 93.43 (±7.03) 83.30 (±22.53) 92.07 (±5.23)
Proposed (MS-Dual) 97.47 (±3.07) 93.30 (±4.11) 95.27 (±4.89) 84.90 (±16.86) 92.74 (±4.76)
Proposed (MS-Dual-Guided) 96.44 (±3.15) 96.14 (±3.15) 94.95 (±4.48) 87.87 (±15.23) 93.85 (±3.50)

Average Surface Distance (MSD) (voxels)

Liver Kidney R Kidney L Spleen Mean

Baseline( DAF [23]) 0.64 (±0.29) 0.97 (±1.08) 0.63 (±0.25) 1.45 (±2.04) 0.92 (±0.33)
Proposed (PAM) 0.55 (±0.19) 0.56 (±0.23) 0.55 (±0.21) 1.54 (±2.40) 0.80 (±0.43)
Proposed (CAM) 0.58 (±0.22) 0.57 (±0.24) 0.52 (±0.20) 1.29 (±1.64) 0.74 (±0.32)
Proposed (DANet) 0.54 (±0.19) 0.56 (±0.19) 0.50 (±0.18) 1.49 (±2.29) 0.77 (±0.41)
Proposed (MS-Dual) 0.53 (±0.18) 0.51 (±0.14) 0.46 (±0.14) 1.19 (±1.42) 0.67 (±0.30)
Proposed (MS-Dual-Guided) 0.54 (±0.16) 0.48 (±0.18) 0.48 (±0.14) 1.13 (±1.24) 0.66 (±0.27)

TABLE IV: Ablation study on different proposed attention modules on the Chaos dataset (multi-organ segmentation on MRI
task). The values show the average result of the experiments averaged over the 3 folds. Best results are represented in red
bold, while blue is used to highlight the second best performance.

DSC (%)

Method Liver Kidney R Kidney L Spleen Mean

UNet [5] 90.94 (±4.01) 79.14 (±15.23) 82.51 (±7.48) 71.95 (±21.61) 81.14 (±7.88)
DANet [19] 91.69 (±4.07) 83.85 (±9.40) 84.49 (±8.60) 75.54 (±16.08) 83.89 (±9.54)
PAN (ResNet34) [20] 91.99 (±2.98) 81.51 (±9.03) 83.62 (±6.21) 73.70 (±19.97) 82.70 (±6.51)
PAN (ResNet101)[20] 92.13 (±3.51) 85.02 (±5.16) 85.36 (±4.87) 74.84 (±21.23) 84.34 (±6.17)
DAF [23] 91.66 (±2.99) 79.28 (±18.68) 83.63 (±7.56) 75.35 (±20.41) 82.48 (±6.06)
UNet Attention [25] 92.02 (±1.93) 84.33 (±5.91) 85.57 (±4.09) 77.18 (±15.95) 84.77 (±5.27)
Proposed (MS-Dual-Guided) 92.46 (±2.82) 87.96 (±6.46) 88.01 (±6.16) 78.61 (±18.69) 86.75 (±5.05)

Volume similarity (VS) (%)

Liver Kidney R Kidney L Spleen Mean

UNet [5] 95.54 (±4.43) 87.68 (±5.77) 89.55 (±4.68) 83.28 (±14.78) 89.01 (±4.82)
DANet [19] 96.90 (±4.18) 92.88 (±5.12) 91.52 (±6.73) 84.37 (±16.15) 91.42 (±4.52)
PAN (ResNet34) [20] 96.56 (±3.55) 90.89 (±5.64) 91.83 (±7.75) 81.98 (±20.67) 90.32 (±5.27)
PAN (ResNet101) [20] 96.99 (±3.64) 93.77 (±4.63) 92.69 (±6.88) 84.24 (±17.37) 91.93 (±4.71)
DAF [23] 96.69 (±3.21) 86.75 (±16.41) 90.29 (±8.39) 84.98 (±14.42) 89.68 (±4.48)
UNet Attention [25] 96.95 (±1.89) 92.29 (±6.41) 91.79 (±3.53) 85.94 (±11.88) 91.74 (±3.91)
Proposed (MS-Dual-Guided) 96.44 (±3.15) 96.14 (±3.15) 94.95 (±4.48) 87.87 (±15.23) 93.85 (±3.50)

Average Surface Distance (MSD) (voxels)

Liver Kidney R Kidney L Spleen Mean

UNet [5] 0.59 (±0.18) 0.69 (±0.38) 0.61 (±0.19) 1.76 (±2.57) 0.91 (±0.49)
DANet [19] 0.61 (±0.27) 0.65 (±0.31) 0.67 (±0.30) 1.17 (±0.94) 0.78 (±0.23)
PAN (ResNet34)[20] 0.62 (±0.25) 0.75 (±0.31) 0.69 (±0.21) 1.37 (±1.43) 0.86 (±0.29)
PAN (ResNet101) [20] 0.57 (±0.22) 0.61 (±0.19) 0.64 (±0.15) 1.30 (±1.47) 0.78 (±0.31)
DAF [23] 0.64 (±0.29) 0.97 (±1.08) 0.63 (±0.25) 1.45 (±2.04) 0.92 (±0.33)
UNet Attention [25] 0.57 (±0.25) 0.61 (±0.23) 0.56 (±0.18) 1.15 (±1.01) 0.72 (±0.24)
Proposed (MS-Dual-Guided) 0.54 (±0.16) 0.48 (±0.18) 0.48 (±0.14) 1.13 (±1.24) 0.66 (±0.27)

TABLE V: Comparison of the proposed network to other state-of-the-art architectures on the CHAOS dataset (multi-organ
segmentation on MRI task). The values show the average result of the experiments averaged over the 3 folds. Best results are
represented in red bold, while blue is used to highlight the second best performance.
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DSC

Method Myocardium Blood Pool Mean

UNet [5] 71.77 (±9.36) 87.84 (±4.35) 79.80 (±6.72)
DANet [19] 75.85 (±9.10) 89.24 (±3.56) 82.55 (±5.91)
PAN (ResNet34) [20] 72.90 (±11.93) 89.04 (±3.69) 80.97 (±7.76)
PAN (ResNet101)[20] 74.98 (±7.68) 89.53 (±2.97) 82.26 (±5.08)
DAF [23] 74.08 (±8.55) 89.48 (±3.39) 81.78 (±5.71)
UNet Attention [25] 74.50 (±10.13) 88.66 (±4.25) 81.58 (±6.84)
Proposed 77.10 (±6.94) 89.30 (±3.50) 83.20 (±4.93)

Volume similarity (VS)

Myocardium Blood Pool Mean

UNet [5] 91.05 (±9.75) 95.78 (±4.04) 93.41 (±6.44)
DANet [19] 91.80 (±8.95) 97.50 (±3.01) 94.65 (±4.45)
PAN (ResNet34) [20] 90.58 (±10.89) 96.93 (±3.66) 93.76 (±5.85)
PAN (ResNet101) [20] 91.42 (±7.59) 97.23 (±2.36) 94.33 (±3.69)
DAF [23] 91.73 (±6.30) 96.89 (±2.33) 94.31 (±3.21)
UNet Attention [25] 92.52 (±7.66) 96.69 (±2.20) 94.61 (±4.17)
Proposed 92.08 (±4.39) 96.82 (±2.76) 94.45 (±2.39)

Average Surface Distance (MSD)

Myocardium Blood pool Mean

UNet [5] 1.82 (±1.48) 1.55 (±1.08) 1.68 (±1.28)
DANet [19] 1.23 (±0.51) 1.32 (±0.46) 1.27 (±0.46)
PAN (ResNet34)[20] 1.97 (±1.84) 1.26 (±0.48) 1.62 (±1.19)
PAN (ResNet101) [20] 1.33 (±0.53) 1.15 (±0.30) 1.24 (±0.38)
DAF [23] 1.41 (±0.45) 1.44 (±0.46) 1.48 (±0.50)
UNet Attention [25] 1.24 (±0.42) 1.25 (±0.39) 1.25 (±0.42)
Proposed 1.15 (±0.33) 1.24 (±0.43) 1.19 (±0.37)

TABLE VI: Comparison of the proposed network to other
state-of-the-art architectures on the HVSMR 2016 dataset. The
values show the average result of the experiments on the 5
folds.

Fig. 8: Evolution of the mean validation DSC over time.
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DSC (%)

Method ED ET TC – Mean

UNet [5] 84.87 (±6.82) 56.38 (±27.55) 79.71 (±11.70) – 73.65 (±12.39)
DANet [19] 88.24 (±5.39) 63.69 (±22.25) 85.33 (±6.92) – 79.09 (±10.89)
PAN (ResNet34) [20] 85.25 (±6.64) 55.89 (±27.76) 81.23 (±8.22) – 74.12 (±12.76)
PAN (ResNet101)[20] 87.07 (±6.67) 60.77 (±24.74) 82.82 (±8.76) – 76.89 (±11.53)
DAF [23] 86.87 (±5.94) 60.28 (±24.74) 83.18 (±8.39) – 76.78 (±11.77)
UNet Attention [25] 87.50 (±5.66) 63.74 (±22.65) 84.59 (±7.43) – 78.61 (±10.58)
Proposed (MS-Dual-Guided) 89.11 (±4.94) 65.25 (±.2285) 86.76 (±6.49) – 80.37 (±10.74)

Volume similarity (VS) (%)

ED ET TC – Mean

UNet [5] 96.36 (±4.08) 75.81 (±27.23) 90.99 (±11.63) – 87.72 (±8.70)
DANet [19] 99.04 (±1.21) 83.47 (±20.11) 97.45 (±2.95) – 93.32 (±6.99)
PAN (ResNet34) [20] 98.05 (±1.98) 75.87 (±28.17) 95.63 (±4.41) – 89.85 (±9.93)
PAN (ResNet101) [20] 98.68 (±2.21) 80.38 (±24.83) 96.22 (±5.89) – 91.76 (±8.11)
DAF [23] 97.99 (±2.10) 77.86 (±24.92) 95.88 (±5.26) – 90.58 (±9.03)
UNet Attention [25] 98.14 (±1.88) 82.99 (±21.09) 96.84 (±2.87) – 92.66 (±6.86)
Proposed (MS-Dual-Guided) 98.54 (±1.76) 82.91 (±20.17) 97.78 (±2.56) – 93.08 (±7.20)

Average Surface Distance (MSD) (voxels)

ED ET TC - Mean

UNet [5] 0.99 (±0.33) 2.37 (±1.74) 1.56 (±1.34) – 1.65 (±0.57)
DANet [19] 0.67 (±0.16) 1.43 (±0.95) 0.78 (±0.25) – 0.95 (±0.33)
PAN (ResNet34)[20] 0.86 (±0.20) 2.29 (±1.87) 1.10 (±0.47) – 1.42 (±0.52)
PAN (ResNet101) [20] 0.74 (±0.19) 1.79 (±1.35) 0.96 (±0.48) – 1.17 (±0.47)
DAF [23] 0.76 (±0.17) 1.84 (±1.33) 1.02 (±0.66) – 1.21 (±0.46)
UNet Attention [25] 0.69 (±0.18) 1.58 (±1.12) 0.79 (±0.29) – 1.02 (±0.40)
Proposed (MS-Dual-Guided) 0.58 (±0.14) 1.40 (±1.02) 0.71 (±0.31) – 0.90 (±0.36)

TABLE VII: Comparison of the proposed network to other state-of-the-art architectures on the BRATS 2018 dataset (multi-
organ segmentation on MRI task). The values show the average result of the experiments averaged over the 3 folds. Best results
are represented in red bold, while blue is used to highlight the second best performance.

Model complexity

Model # Params
1 Iter 2 Iter 3 Iter 5 Iter

UNet 31,030,853 - - - -
PAN (ResNet34) 21,323,991 - - - -
PAN (ResNet101) 42,675,415 - - - -
UNet Attention 34,877,681 - - - -
DANet (ResNet101) 68,475,961 - - - -
Proposed(DAF) 43,482,179 - - - -
Proposed(PAM) 43,486,343 - - - -
Proposed(CAM) 43,485,543 - - - -
Proposed(DANet) 43,980,179 - - - -
MS-Dual (No guidance) - 43,485,831 44,411,103 45,337,675 47,190,819
MS-Dual-Guided - 50,531,399 58,499,679 66,470,539 82,412,259
MS-Dual-Guided (No Deep Sup) - 50,530,099 58,498,379 66,467,939 82,407,059
MS-Dual-Guided (Dist) - 43,485,831 44,411,103 45,337,675 47,190,819

TABLE VIII: Model complexity, measured in number of
parameters, for the evaluated models.
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